Studentische Arbeiten und HiWi-Stellen

Initiative zeigen!

Falls in dieser Übersicht kein passendes Thema oder eine passende Stelle gefunden werden konnte, aber trotzdem Interesse besteht an unseren Lehrstuhl mitzuwirken, kann über die folgende Emailadresse eine Nachricht hinterlassen werden:

work-and-thesis@rsi.ei.tum.de

Prosthetics

Forschungspraxis: Prosthesis Development for Cybathlon Challenge

We are looking for talented students who would like to support our team in the Cybathlon Competition by working on challenging tasks as part of a Forschungspraxis.

Students of MSRM have been designing an advanced arm prosthesis which has been specially developed for the international Cybathlon competition.

Please apply if you are an excellent student or you are skilled in
- CAD design and mechnical engineering (Solidworks)
- Embedded systems (C programming, µControllers, Linux)
- Modelling and control (Matlab/Simulink)

For more information please have a look at:

https://cybathlon.ethz.ch/

Contact:
a.toedtheide@tum.de

 

 

 

Mobile Robots

Mechatronics System Developement

PCB design and Low-Level Control of a Pneumatic Actuation Unit

Pneumatic (air driven) actuators are a promising technology for human robot collaboration as they offer unique features such as inherent compliance, backdrivability and robustness to external impacts that have not been achieved by conventional electromechanical actuators so far. In the last years tendon-driven pneumatic systems, inspired by the biological architecture of the human arm, have been proposed by our team showing the promising performance of the technology.

Our team has been designing a small control unit for pneumatic systems being still in an early prototpye phase. The task of this work is to build an integrated circuit board containing a microcontroller and a valve driver uncluding sensor and actuator communication.

The following skills are useful for the work:

  • EAGLE
  • circuit design
  • C programming
  • micro controllers
  • control theory

If you are interested please contact:
a.toedtheide@tum.de

Development of an Electronic (Sub-)Module Library for Robotic Systems

→ Research/Engineering-Internship
→ For more information contact us!

Steps:

  • Component research
  • Design, production and test of component submodules
  • Documentation and development of module library/database

Prerequisites:

  • PCB Design / Production
  • Microcontroller programming

Contact:
Johannes Ringwald
johannes.ringwald@tum.de
+49 (89) 289 - 29414
---
Edmundo Pozo Fortunic
edmundo.pozo@tum.de

Forschungspraxis: Experimental Control Performance Testing and Model Identification of a Pneumatic Acuation Unit

I am always looking for talented students who are interested in doing their internship (Forschungspraxis) in the following fields:

  • mechatronic systems and robot development (CAD + system design)
  • optimization and identification, 
  • control and observers,
  • pneumatic acutators,
  • modeling of multibody systems and actuators,
  • experimental data analysis and signal processing.

It would be benefitial if you have already gained some experience in Matlab Simulink or Solidworks. It might also be possible to write a master thesis after the internship.

Please contact me by the following address:
alexander.toedtheide@tum.de

Forschungspraxis: Modeling and Control of Pneumatically Actuated Robots

Pneumatic (air driven) actuators are a promising technology for human robot collaboration as they offer unique features such as inherent compliance, backdrivability and robustness to external impacts that have not been achieved by conventional electromechanical actuators so far. In the last years tendon-driven pneumatic systems, inspired by the biological architecture of the human arm, have been proposed by our team showing the promising performance of the technology.

Apart from other listed topics in the field of pneumatic actuators other interesting topics might be available. For more information please contact:

alexander.toedtheide@tum.de

You will get the opportunity to work in the following fields:

  • Pneumatic actuators,
  • Matlab/Simulink
  • Multibody systems

Prior background in pneuamtic systems or thermodynamics is not required. Sound knowledge in Automatic Control, Mechanical or Electrical modeling, Optimization and Observers can be usefull.

Videos of previous research see below:

Mechatronics Motor Module Development

MSRM plans to build new robotic systems.

We are looking for talented students who are interested in the mechatronic development of electromechanical devices.

The work includes CAD modeling of robot joints, experimental implementation of sensors, motors and controllers.

Please contact us for further information.

alexander.toedtheide@tum.de

 

Legged Locomotion

Dynamics Algorithms – Closed form Computation of the EoM

Type: Research Internship

Description:

Due to the increasing complexity of robots, especially in the field of legged robots, the computation of the equations of motion has received more and more attention throughout the last decades. The spatial formulation of dynamic quantities and algorithms such as the recursive Newton-Euler algorithm (RNEA) and the composite rigid-body algorithm (CRB) are some examples that underline the progress that has been made in the field. However, the “algorithmic toolbox” that is available in most frameworks today still lacks for example the computation of state and partial derivatives, the computation of the regressor, the explicit computation of the Coriolis matrix, etc.

The Rigid Body Dynamics Library (RBDL) developed by [1] is based on Featherstone’s spatial formulation of the RNEA and CRB. It also contains methods to compute the forward kinematics and Jacobians for an arbitrary tree-like structure. However, like most other libraries, it lacks the explicit numerical computations of some quantities that might result in better control laws. To get past these shortcomings, the goal of this student project is to augment the RBDL library with a novel iterative method introduced by [2]. With this algorithm, it is possible to obtain the closed-form solution of the EoM as well as their derivatives.

Prerequisites:

  • Strong background in kinematic and dynamic modeling
  • Strong C programming skills

Literature:

[1] Felis, Martin L. "RBDL: an efficient rigid-body dynamics library using recursive algorithms." Autonomous Robots 41.2 (2017): 495-511.

[2] Garofalo, Gianluca, Christian Ott, and Alin Albu-Schäffer. "On the closed form computation of the dynamic matrices and their differentiations." 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013.

Contact:
Dennis Ossadnik
dennis.ossadnik@tum.de

Projects in Rehabilitation Robotics

A Study on Lower Limb Neuromuscular Rehabilitation

Tasks:

• Defining protocol for optimizing rehabilitation process

• Defining criterion for monitoring the recovery

Preferred background:

• Biomechanics

• Physical therapy and/or diagnostics

Description:

In collaboration with Schön Klinik Bad Aibling (internationally recognized hospital for neurology) and Reactive Robotics GmbH, we aim to develop an intelligent robotic solution for early mobilization of intensive care unit patients.

The goals of the thesis are:

• To observe and analyze the neuromuscular recovery process of patients in intensive care stations

• To define a set of parameters which can be monitored to quantitatively assess the patient recovery process

• Define a protocol for optimizing the recovery process. This protocol will subsequently be implemented on a robot by the project team. The long term motivation of this work is to make effective physiotherapy accessible to every individual in need with the help of machine intelligence.

Contact information:

Chair of Robotics Science and Systems Intelligence Munich School of Robotics and Machine Intelligence, TUM Dinmukhamed Zardykhan (d.zardykhan@tum.de)

Robot Safety: Bachelor/Master Thesis | Research/Engineering-Internship

Designing Collision Test Devices and Collision Testing

Recently the collaboration between robot and human is becoming more and more close. Therefore several constraints for the robot have to be fulfilled. Most importantly human injury has to be prevented. Based on work of Prof. Dr. Haddadin a new portable collision test device has to be build, collision test with human subjects and models for human subjects run and the data merged into safety curves. 
 

Tasks:

- CAD modelling and construction of a collision test device for human limbs 
- Validation of the device and propsed models
- Testing and data collection

Type:

Internship, Bachelor-/Masterthesis
(The tasks can be spllit into diffrent workpackages)

Prerequisites:

- experience in CAD-modelling
- C++ knowledge
- basic biomechanical knowledge

Contact:

robin-jeanne.kirschner@tum.de

Entwicklung von Testaufbauten für Kollisionsexperimente in der Robotik

Im industriellen und häuslichen Umfeld werden Roboter zukünftig eng mit dem Menschen zusammenarbeiten. Während der physischen Interaktion kann grundsätzlich nicht vermieden werden, dass unerwünschter Kontakt auftritt. Um die Sicherheit des Menschen zu gewährleisten, muss untersucht werden, was passieren kann, wenn Mensch und Roboter miteinander kollidieren. An der
 Munich School of Robotics der TU München soll ein Labor aufgebaut werden, in dem systematische Kollisionsexperimente durchgeführt werden, um die vom Roboter ausgehende Gefahr beurteilen zu können. Folgende Themen können im Rahmen der studentischen Arbeit behandelt werden:

  • Konzeption und Planung verschiedener Teststände

  • CAD-Design der Aufbauten

  • Auslegung der Elektronik, Sensorik und Aktuierung

  • Integration der Komponenten

  • Entwicklung der Steuerung

  • Durchführung von Experimenten und Auswertung der Daten

 

Voraussetzungen

  • Studium der Elektrotechnik, Maschinenbau, Mechatronik, Informatik o.ä.

  • Eigenständige Arbeitsweise und Kreativität

 

In der Arbeit sind verschiedene Schwerpunkte möglich, eine konkrete Aufgabenstellung kann in einem persönlichen Gespräch erörtert werden.

Praktikanten- und Hilfswissenschaftler-Stellen sind besonders gesucht!


 Kontakt

Robin Kirschner, M.Sc.

Munich School of Robotics and Machine Intelligence
 Technische Universität München
 Heßstraße 134
 80797 München

robin-jeanne.kirschner@tum.de
 +49 (89) 289 – 29438

Collision Analysis and Safe Control in Human-Robot Interaction

Currently, increasing effort is taken in the robotics community to understand injury mechanisms during physical human-robot interaction (pHRI). This is motivated by the fact that human and robot will work intensively and closely together, and therefore, one has to be aware of the potential threats in case such a close cooperation takes place and take appropriate countermeasures to ensure human safety via planning and/or control. In the context of safety in pHRI, possible topics that can be addressed in the thesis/internship are:

  • Design and analysis of collision experiments and/or testing devices
  • Development and verification of collision simulations
  • Survey of biomechanics and forensics literature
  • Development of robot motion planning and/or control schemes for ensuring human safety

Prerequisites:

  • Studies in Mechanics, Mechatronics, Electronics, Computer Science 
  • Knowledge in robotics & control (for topics on planning & control)
  • Good C++ programming skills
  • Matlab/Simulink
  • Working knowledge in ROS
  • Ability to work well structured and organized
  • Creativity

Contact:
Mazin Hamad, M.Sc.
mazin.hamad@tum.de
Chair of Robotics Science and Systems Intelligence

Analysis and safe control of mobile manipulators

Mobile robots have become increasingly popular in industrial and service scenarios, as they allow for dexterous motions and manipulation in large areas. As robots are nowadays intended to work closely together with human operators, one needs to be aware of potential threats and take appropriate countermeasures to ensure human safety via planning and control. In this work, the safety characteristics of mobile manipulators shall be investigated and control schemes shall be developed which maximize performance while meeting safety constraints at the same time. 

Possible work steps:

  • Literature review
  • Modelling and comparison of different types of mobile platforms
  • Derivation of global safety characteristics
  • Development of safe control schemes

Prerequisites:

  • Studies in Mechanics, Mechatronics, Electronics, or Computer Science 
  • Knowledge in robotics & control
  • Knowledge in optimization
  • Matlab/Simulink
  • Ability to work well structured and organized
  • Creativity

Contact:
Nico Mansfeld, M.Sc.
nico.mansfeld@tum.de

Alexander Kurdas, M.Sc.
alexander.kurdas@tum.de

Chair of Robotics Science and Systems Intelligence

Modelling and Testing of a Flexible Link Robot

Abstract

Reducing the link weight of a robot manipulator has been identified as one of the important factors to reduce the production and installation cost. Not completely rigid links also allow for safer physical human-robot interaction (pHRI). However, this may introduce flexible modes within the manipulator's operation bandwidth, especially during high-frequency impact incidents. Controlling the motion of such manipulators while experiencing external impacts is a challenging task. This is because their elastic behaviour is arising not only because of flexible joints but also due to flexible links. Therefore, more advanced sensing, motion planning and real-time control strategies are required. To achieve all those goals, accurate mathematical models are first required. In this development and research work, we aim to build simulation solutions to understand the related problems better. The final goal is to generate more precise theoretical models with experimental sensing prototypes that enables extending the elastic joint model to also integrate link elasticities during impact incidents. 

Possible work steps:

Literature Review

Software tutorials

Experiment equipment tutorials

MBD model creation

1 DoF testbed development and model evaluation

Robot tests

 

Prerequisites:

 

Studies in Mechanics, Mechatronics, Control

Knowledge in robotics & control

Matlab/Simulink

FEA

CAD software knowledge

Ability to work well structured and organized

Creativity

 

Not Prerequisite but a plus

MSC.Adams

Vibration knowledge

 

Contact:

Mehmet Can Yidirim

Mehmet.yildirim@tum.de

 

Mazin Hamad, M.Sc.

mazin.hamad@tum.de

 

 

 

Artificial Hand Design

Task Planning

AI-Enabled Lab-Automation

AI unterstützter robotischer Lab Assistent: Zuverlässiges automatisiertes Flüssigkeitshandling für den Laboralltag der Zukunft

Typ: Forschungs-/Ingenieurpraktikum

→ Für weitere Informationen kontaktieren Sie uns!

Die Automatisierung von Laborprozessen in der Chemie, Bio-, Pharma- und Lebensmitteltechnologie sowie in der Medizin ist bereits heute Realität. Doch viele Lösungen, die heute auf dem Markt angeboten werden, sind entweder zu hochpreisig und/oder nur speziell und unflexibel für bestimmte Prozesse im Labor entwickelt und optimiert. Damit die Laborautomatisierung für den dynamischen Laboralltag als Werkzeug für Jedermann genutzt werden kann, soll in diesem Anwendungsforschungsprojekt ein mit AI unterstützter Automatisierungsablauf für einen robotischen Laborassistenten entwickelt und im Labor umgesetzt werden. Als zu automatisierender Prozess soll vorerst das zuverlässige automatisierte Flüssigkeitshandling angegangen werden. Um dies zu erreichen steht einer der neusten kollaborativen Roboter zur Verfügung sowie 3D-Druck-Möglichkeiten zur flexiblem Gripperfingerentwicklung.

Folgender Ablauf ist geplant:

  • Ausführliche Literaturrecherche Robotik in der Laborautomatisierung
  • Analyse und Entwicklung von Roboterfingersystemen zur Nutzung von Laborwerkzeugen
  • Analyse, Automatisierung und Evaluierung von Prozessabläufen in Bezug auf Flüssigkeitshandling im Labor
  • Und vieles mehr …

Voraussetzungen:

  • Aus dem Fachbereich Elektrotechnik und Informationstechnik, Maschinenbau oder Mechatronik
  • Grundwissen in Robotik, Regelungstechnik und Systemtheorie
  • Gute Programmierkenntnisse in C/C++, Python, Matlab
  • Gute Fähigkeiten in CAD-Design (SolidWorks usw.)
  • Erfahrung mit 3D-Druck

Kontakt:
Dennis Knobbe
dennis.knobbe@tum.de
+49 (89) 289 - 29412

Human modeling

3D-Modellierung und Echtzeitvisualisierung der Muskelverformung

Es gibt heutzutage zahlreiche 3D computergraphische Modelle für muskuloskelettale Systeme, z.B.
- statisches Modell,
- bewegliches aber rechenintensives Modell
- echtzeitfähiges Modell mit aber abstrahierter Muskeldarstellung.
Diese Arbeit handelt sich um eine algorithmische Kombination der vorteilhaften Merkmale von den Stand-der-Technik-Modelle, und zwar eine rechnerische Lösung zur echtzeitfähiger 3D-Visualisierung mit sowohl anatomisch korrekter (Muskel-)Darstellung als auch diversen Bewegungsfreiheitsgrade. Hierbei ist es eine rechnerisch effiziente Muskelverformung während der Bewegungen eine Herausforderung. 

Wir erwarten von Ihnen
- Grundkenntnis der Mechanik und der Mehrkörpersysteme (Kinematik, Statik)
- Grundkenntnis numerischer Mathematik
- Objektorientierte Programmierung (C++ oder C#)
- Interesse an Visualisierung der Anatomie und Entwicklung von Computerspielen

Wir bieten
- Gut gestalteten Arbeitsplatz
- Fachliche Betreuung

Kontakt:
M.Sc. M.Sc. Tingli Hu
tingli.hu@tum.de

Teleoperation

Development of a telepresence reference platform

Type: Research internship

Tasks

The goal is to develop and setup a telepresence reference platform consisting of state-of-the-art robots to objectively compare teleoperation control schemes and communication methodologies. Concrete work packages are:

  • Planning and setup of hardware consisting of table, robots and additional items.
  • Development of objective evaluation procedures including quality metrics.
  • Initial development of user studies.

Requirements

  • Experienced with C++ (this is very important)
  • Familiar with python
  • Basic knowledge in robotics
  • Familiar with (at least interested in) telepresence

Motivation

Teleoperation will become more important in the next years due to rapid advances in modern communication technologies such as 5G. The next stage of the internet, the Tactile Internet, will allow user to interact with remote location via robotic avatars. High-speed communciation relays not only audiovisual information but also tactile feedback to the user which allows for completely new applications.

Although there has been much research into robotic telepresence and communication modelling over the last decades, we are often still lacking objective criterions to compare the various approaches and combinations of them. The aim of this research internship is to develop a platform consisting of state-of-the-art robots that can serve as a basis for experimental comparisons. Building on this, objective quality metrics based on both robotic and human interaction with the system will be investigated.

Please also have a look at this paper for further reference.

Contact

Lars Johannsmeier

lars.johannsmeier@tum.de